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Modification of magnetic Fe3O4 nanoparticles for targeted delivery of payloads 

The development of methods for targeted delivery of payload is a rapidly developing area of research. For 

this reason, iron oxide nanoparticles have potential to be used in delivery of substances by using external 

magnetic field. However it is necessary to develop methods of their modification, which will lead to the pos-

sibility of immobilization of payloads with the required concentration for therapeutic use. In this article, 

supermagnetic iron oxide nanoparticles (Fe3O4) were modified with silanes such as (3-chloropropyl)-

trimethoxysilane, (3-mercaptopropyl)trimethoxysilane, (3-aminopropyl)trimethoxysilane and (3-glycidyl-

propyl)trimethoxysilane by reaction of polycondensation. Then carborane compound (payload) was success-

fully attached on the modified nanoparticles via covalent bonding. Structure, size and element composition 

were studied by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and 

Energy-dispersive X-ray spectroscopy (EDA). It was found that resulting nanoparticles contain 16.6 % of bo-

ron (according to EDA), and their average size is 32±9 nm (according to SEM). In vitro test using HeLa (cer-

vical cancer cell) and PC-3 (prostate cancer cell) shows low cytotoxicity in concentration range of  

1–200 µg/ml. 

Keywords: Fe3O4 nanoparticles, silane, surface modification, targeted delivery of payload, BNCT, carborane, 

biological test, cytotoxicity. 

 

Introduction 

The science and engineering of nanometer-sized materials is currently being used to develop numerous 

scientific, industrial, environmental, and technological fields. Biology, medicine, chemistry, pharmaceuti-

cals, agriculture, food industry and materials science are the main areas that have benefited from the techno-

logical progress achieved in the field of nanoscience. In recent years, significant growth has been observed in 

the biomedical application of nanostructured materials [1–4]. Nanostructures of different composition and 

shapes form the basis for a huge variety of pharmaceutical and medical applications, including diagnosis and 

drug delivery, and they have particular potential in cancer therapy. According to the International Agency for 

Research on Cancer [5], 18.1 million new cancer cases and 9.6 million cancer deaths were reported in 2018. 

Kazakhstan mortality index is 140.2 while average of worldwide is 102.4 and it is predicted that this index 

will grow. Despite all the preventive measures and therapeutic efforts of the last decades, the upward trend in 

incidence continues [6]. Typical chemotherapy drugs cannot be sufficiently concentrated in the area of the 

tumor and have a negative effect on the entire body. Thus, one of the problems is the development of meth-

ods of targeted therapy, which selectively affects the tumor, while maintaining healthy tissue and increasing 

the effectiveness of the drugs used. Biomimetic properties as well as an unusual surface-to-volume ratio 

make nanoparticles promising tools for the treatment of diseases [1]. 

Nanoparticles have unique physical and chemical properties due to their size, which can be comparable 

with the sizes of antibodies, receptors, nucleic acids, proteins, and other biological macromolecules. In addi-

tion, the use of nanostructures may allow the use of compounds that have poor solubility in water or low 

chemical and biological stability, metabolic barriers and etc. For these purposes, various nanostructures are 

used: liposomes, polymer and protein nanocapsules, micelles, gold and silicon nanoparticles [7]. Moreover, 

magnetic iron oxide nanoparticles have wide potential applications in biomedicine [8–12], including magnet-

ic resonance imaging, magnetic hyperthermia, cancer therapy, and targeted drug delivery; in catalysis [13–

15] and magnetic separation [16, 17]. Despite these promising results, their successful transition into clinical 

conditions depends strongly on their physicochemical properties, toxicity, and functionalization possibilities. 

Iron oxide nanoparticles are low stable, have a tendency to agglomerate in solutions, they have lack of bio-
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compatibility. Various materials, such as silanes, metals, polymers, fatty acids and amino acids, are used to 

functionalize the surface and to stabilize magnetic nanoparticles [18–20]. Among other materials, silane 

based compounds are the most promising because they have high biocompatibility, stability, low toxicity, 

low cost, and high capacity for functionalization [21–23]. Moreover, the modification of magnetic nanoparti-

cles with silanes with various functional groups will allow immobilization of drugs with different chemical 

nature. One of such drugs can be carborane derivatives for potential use in neutron capture cancer therapy 

(NCT) and chemotherapeutic drugs. 

In this article, we present the results of synthesis and modification of iron oxide nanoparticles with var-

ious silanes and immobilization of carborane compound (payload) on their surface. Moreover, the biocom-

patibility was evaluated in vitro using human cancer cell lines: HeLa (cervical cancer cell) and PC-3 (pros-

tate cancer cell). 

Experimental 

Synthesis and modification of iron oxide nanoparticles 

Fe3O4 nanoparticles were obtained by co-precipitation of a mixture of iron chloride (II) and iron chlo-

ride (III) with the addition of ammonium hydroxide according to the method described in the our previous 

published article [24]. 
Modification of the surface of iron oxide nanoparticles with silanes such as (3-chloropropyl)-

trimethoxysilane (Si-Cl), (3-mercaptopropyl)trimethoxysilane (Si-SH), (3-aminopropyl)trimethoxysilane  

(Si-NH2) and (3-glycidylpropyl)trimethoxysilane (Si-epoxy) was performed by reaction of polycondensation. 

With this aim, 0.5 g of Fe3O4 was dispersed in 100 ml of o-xylene, 3 ml of silane was added, the reaction 

mixture was purged with argon. The reaction was carried out at 90 ºC for 5 hours. After that, the obtained 

nanoparticles were separated with a magnet, washed in o-xylene, acetone, and dried. 

Immobilization of carboranes to functionalized Fe3O4 nanoparticles 

Commercial available isopropyl-o-carborane (0.016 M) was dissolved in 30 ml anhydrous benzene. The 

solution was bubbled with argon, then freshly prepared butyl lithium solution (0.016 M) was added, isopro-

pyl-o-carboranyl lithium was precipitated after 1 hour of stirring. Diethyl ether was added to the reaction 

mixture to dissolve the precipitate. After that, suspension of Fe3O4–Si-epoxy in benzene was added. The re-

action was carried out at room temperature during 6 hours. The resulting suspension was magnetically sepa-

rated, washed with benzene and diethyl ether several times, dried at 50 ºC. 

Methods of characterization 

FTIR spectra were recorded on InfraLum FT-08 FTIR Spectrometer (Lumex, Russia) with Single Re-

flection Diamond ATR accessory (GladiATR, PIKE) to study chemical group shifts before and after nano-

particles modification. Measurements were taken in the range of 400 to 4000 cm
–1

. All spectra (25 scans at 

2 cm
−1

 resolution) were recorded at 21–25 ºC. 

JEOL JSM-7500F scanning electron microscope (SEM) was used for characterization of nanoparticle 

morphology and size during functionalization. Nanoparticle distribution were evaluated by analyzing SEM 

images using ImageJ. EDX analysis was done using Hitachi TM 3030 with microanalysis system Bruker 

XFlash MIN SVE at 15 kV. Before the analysis, the samples were glued to carbon tape and sputtered with 

gold on magnetron JFC-1600. The analysis of the elemental composition was carried out evaluating the spec-

tra from various points of the sample, the average values of the element content were calculated based on the 

10 spectra. 

Cytotoxicity Assay 

In order to monitor the cytotoxic effect of functionalised magnetic nanoparticles different human cancer 

cell lines were used: HeLa (cervical cancer cell), PC-3 (prostate cancer cell). As recommended, fibroblasts 

like cells of L929 obtained from subcutaneous adipose tissue of mouse were used as normal cells (PN-EN 

ISO 10993–5:2009 norm). The cell culture for HeLa and PC-3 was described previously [25]. 

Cytotoxicity of nanoparticles was evaluated using in vitro model and day 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide [26, 27]. All cancer cell lines were plated into 96-well plates in volume of 

8–10·10
3
/100 μl/well. After 24 hours incubation, the samples were added in a concentration range of  

1–200 μg/ml and a volume of 100 μl/well into wells with suspensions of particular cell lines. Subsequently, 

cells were incubated for next 24 hours and 72 hours under standard conditions (37 ºC and 5 % CO2). In ex-

periments two types of cell culture medium were used: with fetal bovine serum (FBS+) and without (FBS–). 

After that time, fresh prepared MTT solution (5 mg/1 ml PBS) was added in volume of 20 μl to each well 
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and cells were incubated for the next 3 hours under the same conditions. Then, the wells contents were re-

moved and lasting crystals were dissolved by the addition of 100 μl DMSO to each well. Absorbance was 

measured using BioTek Power Wave XS spectrophotometer at the wavelength of λ=570 nm. Prior to investi-

gation the nanoparticles solution in PBS probes were sonicated in order to disintegrate particles with ultra-

sounds. Control values were absorbance measurements received for the wells with cells incubated without 

the addition of the studied compounds. For each concentration of the nanoparticles 6 absorbance measure-

ments were carried out, for which average values ± SEM were calculated. Obtained MTT results were pro-

cessed using GraphPad Prism 7 Program, into graphs, which depict inhibition of cell viability in relation to 

compound concentration. 

Results and Discussion 

At the first stage of the study, methods of coating magnetic iron oxide nanoparticles with a silane shell 

were studied. Silanes can serve as an intermediate link between inorganic nanoparticles and organic/organo-

element payloads. Trimethoxysilanes with different reactive groups such as chlorine-, amino-, epoxy- and 

mercapto- were chosen to be able to attach different payloads at next stage. To create the shell, the 

polycondensation reaction of silanes was used, which occurs both with silane molecules and with hydroxyl 

groups that are on the surface of iron oxide nanoparticles. Thus (3-chloropropyl)trimethoxysilane, (3-

mercaptopropyl)trimethoxysilane, (3-aminopropyl)trimethoxysilane and (3-glycidylpropyl)trimethoxysilane 

were chosen. The reaction was carried out in o-xylene under argon. Magnetic separation made it possible to 

well purify magnetically modified nanoparticles from non-magnetic silane nanoparticles, which were a by-

product. Figure 1 shows the results of Fe3O4 modification with (3-chloropropyl) trimethoxysilane. It was 

found out that size of nanoparticles increased from 21±4 nm (initial Fe3O4) to 29±5 nm according to SEM 

analysis. At the same time, the weight gain was 2.8 %. Elemental composition according to EDA analysis is 

as follows (Fig. 1c): Fe — 13 %, O — 43.6 %, C — 40.2 %, Cl — 0.6 %, Si — 0.5 %, Au — 1.1 %, Cu — 

1 %. It should be noted that gold and copper appeared as a result of magnetron sputtering before SEM analy-

sis to avoid surface charge. The FTIR spectrum (Fig. 1d) of the initial Fe3O4 nanoparticles is characterized 

by absorption at 3500–3000 cm
–1

 (OH), 1614 cm
–1

 associated with O–H vibrations in combination with Fe 

atoms, as well as at 544 and 399 cm
–1

 (Fe–O). The coating of nanoparticles led to the appearance of new 

peaks at 1040 and 1146 cm
-1

 (Si–O–Si) and 628 cm
-1

 (C–Cl). The absence of peak at 913 and 940 cm
-1

 allow 

us to conclude that the reaction of polycondensation completed.  

 

  

Figure 1. Scheme of modification of Fe3O4  

by (3-chloropropyl)trimethoxysilane (a),  

SEM image (b), EDA (c) and FTIR spectra (d) 

Figure 2. Scheme of modification of Fe3O4  

by (3-mercaptopropyl)trimethoxysilane (a),  

SEM image (b), EDA (c) and FTIR spectra (d) 
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Modification with (3-mercaptopropyl)-trimethoxysilane led to formation of nanoparticles with size of 

26±6 nm (Fig. 2b). The FTIR spectra (Fig. 2d) show the appearance of new peaks at 706 cm
-1

 (S–C), 1059 

and 1144 cm
-1

 (Si–O–Si). At the time the broad peak at 913 cm
-1

 were detected which is related to Si–OH 

group. This indicates the incompleteness of the reaction. EDA (Fig. 2c) registered 1.3 % of sulfur and 1.5 % 

of silicon. 

Modification with (3-aminopropyl) trimethoxysilane was carried out according to the same procedure in 

o-xylene at 90 ºC. The average size of obtained nanoparticles was 30±8 nm. Aminated nanoparticles are 

characterized by the appearance of new peaks at 1677 cm
-1

 (NH2), at 1163 and 1064 cm
-1

 (Si–O–Si), and at 

1265 cm
-1

 (C–N) (Fig. 3). It was also found out appearance the peak related to Si–OH bonds, but with a low-

er concentration than in the case of (3-mercaptopropyl)trimethoxysilane. Nitrogen in the amount of 7.6 % 

was observed in EDA. Modification of Fe3O4 by (3-glycidylpropyl)trimethoxysilane allowed to create chem-

ical active epoxy groups for further isopropyl-o-carborane attachment (payload). Epoxy ring were detected in 

FTIR spectra at around 900–920 cm
-1

. In the same region, the peak related to Si–OH can be appeared. The 

presence of the epoxy group will also be confirmed by further chemical transformations. SEM analysis 

(Fig. 4b) shows an average nanoparticles size of 39±8 nm. 

 

  

Figure 3. Scheme of modification of Fe3O4  

by (3-aminopropyl)trimethoxysilane (a),  

SEM image (b), EDA (c) and FTIR spectra (d) 

Figure 4. Scheme of modification of Fe3O4  

by (3-glycidylpropyl)trimethoxysilane (a),  

SEM image (b), EDA (c) and FTIR spectra (d) 

Commercial available isopropyl-o-carborane was immobilized to Fe3O4-Si-epoxy nanoparticles via co-

valent bonding using butyl lithium as shown in Figure 5a. New peaks in FTIR spectra (Fig. 5d) appeared at 

3353, 2924, 2572, 1496, 1433 and 860 cm
-1

 are related to OH, C–H, B–H, δas CH3 and carborane skeleton 

vibrations respectively [29], with increase in average nanoparticles size according to SEM analysis to 

32 ± 9 nm (Fig. 5b-c). 

EDA analysis was performed to study element content on Fe3O4 nanoparticles surface before and after 

modification. The data extracted from the EDA spectra are collected in Table 1. Initial Fe3O4 consist of 43.1 % 

Fe and 56.9 % O. Isopropyl-o-carborane attachment led to the appearance of boron in an amount of 16.5 %. 

T a b l e  1  

Data from EDA spectra 

Sample 
Atomic content, % 

Fe O Si B C 

Initial Fe3O4 43.1±2.1 56.9±3.6 – – – 

Fe3O4/GPTMS  20.7±2.1 52.9±2.1 6.4±1.3 – 20.0±1.5 

Fe3O4/GPTMS/Carborane  22.2±1.5 38.9±3.1 2.4±0.3 16.5±2.3 20.0±1.4 
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Figure 5. Scheme of Fe3O4 modification and carborane immobilization (a),  

SEM image of initial Fe3O4 nanoparticles (b), SEM image of Fe3O4-Si-epoxy-carborane nanoparticles (c)  

and FTIR spectra of Fe3O4 before and after modification (d) 

Results of XRD analysis of the studied nanoparticles before and after modification are presented in Fig-

ure 6. The general view of X-ray diffraction patterns evidence to the polycrystalline type of nanoparticles 

with a low degree of structural ordering and crystallinity. Table 2 shows the results of changes in structural 

parameters calculated based on the analysis of X-ray diffraction patterns, which were made according to 

[30–31]. 

 

 

1 — initial Fe3O4; 2 — Fe3O4-Si-Cl; 3 — Fe3O4-Si-SH; 4 — Fe3O4-Si-epoxy;  

5 — Fe3O4-Si-epoxy-carboranes; 6 — Fe3O4-Si-NH2 

Figure 6. XRD patterns 
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T a b l e  2  

Data of XRD analysis 

Sample Initial Fe3O4 Fe3O4-Si-Cl Fe3O4-Si-SH 
Fe3O4-Si-

NH2 

Fe3O4-Si-

epoxy 

Fe3O4-Si-

epoxy-

carboranes 

Structure type Cubic Fd-3m(227) PDF-00–065–0731 

Lattice parameter, Å a = 8.4226 a = 8.3384 a = 8.3139 a = 8.3429 a = 8.3039 a = 8.2603 

δ 0.009 0.02 0.193 0.091 0.206 0.234 

Structure Fe2.99O4 Fe2.98O4 Fe2.81O4 Fe2.91O4 Fe2.80O4 Fe2.77O4 

Crystalline size, nm 18.92±1.86 14.89±1.54 21.33±1.78 18.03±1.69 17.82±1.49 17.41±1.39 

 

It was found that with a high degree of probability (more than 85 %), the diffraction pattern of the ob-

tained nanoparticles corresponds to the cubic phase of magnetite, with the spatial system Fd-3m (227). Com-

parison analysis was carried out using the PDF-2 database. In this case, the parameters of the crystal lattice 

differ from the reference values selected from the PDF-00-065-0731 database. The differences can be caused 

both by the processes of disordering of the structure arising as a result of synthesis, as well as by subsequent 

oxidation processes associated with the processes of modification. In this case, the modification leads both to 

a change in the stoichiometric ratio and in the crystallite size. 

The cytotoxicity of Fe3O4-Si-epoxy-Carborane nanoparticles was characterized by determination of cell 

vitality. The percentages of active cells — cell viability ± SEM values after 24h and 72 hours incubation are 

shown in Figure 7. 

 

 

Figure 7. Cell viability after 24 and 72 hours incubation with FBS and without FBS  

as a function of nanoparticles concentrations for HeLa (a) and PC-3 (b) cell lines 

Visual inspection of cells along with the viability and cytotoxicity after 24 hours as well as 72 hours in-

cubation results indicated a low cytotoxicity of investigated particles for concentrations < 200µg/ml in case 

all investigated cell lines. For that reason, the value of IC50 (half maximal inhibitory concentration) has not 

been established. The dose-dependent decrease in viability is well visible for HeLa and PC-3 cells. The ex-

periments indicate that mitochondrial and overall cell viability is maintained. Unexpected increase in viabil-

ity visible especially for medium without (FBS-) may be due to increased mitochondrial activity associated 

with cell phagocytosis of nanoparticles. 

Conclusions 

Functionalization of Fe3O4 nanoparticles with epoxy, amino, mercapto, chloro group using silanes was 

carried out. The features of the reactions were studied; the optimal conditions for the process were estab-

lished. The formation of functional groups has been proven by FTIR spectroscopy, SEM, and EDA. Further, 

the obtained modified nanoparticles with chemically active groups can be used to immobilize payload. For 

this propose, carborane compound was successfully attached to the modified nanoparticles via formation of 

covalent bond for potential application in boron neutron capture therapy of cancer. It was found that resulting 

nanoparticles contain 16.6 % of boron (according to EDA), and their average size is 32±9 nm (according to 

SEM). In vitro test using HeLa (cervical cancer cell) and PC-3 (prostate cancer cell) shows low cytotoxicity 

in concentration range of 1–200 µg/ml. 
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Пайдалы жүктемені жеткізу үшін магнитті  

Fe3O4 нанобөлшектерін модификациялау 

Пайдалы жүктемені мақсатты жеткізу әдістерін жасау — бұл жедел дамып келе жатқан зерттеу 

бағыты. Осыған байланысты темір оксидінің нанобөлшектері сыртқы магнит өрісін пайдаланып зат-

тарды жеткізу үшін пайдаланылуы мүмкін. Алайда терапиялық қолдану үшін қажетті 

концентрациядағы дәрілік заттарды иммобилизациялау мүмкіндігіне әкелетін оларды модификация-

лау әдістерін әзірлеу қажет. Мақалада (3-хлоропропил)триметоксисилан, (3-меркаптопропил)три-

метоксисилан, (3-аминопропил)триметоксисилан және (3-глидицилпропил)триметоксисилан сияқты 

силандармен супермагниттік (Fe3O4) темір оксиді нанобөлшектері модификацияланды. Содан кейін 

карборанды қосылыс модификацияланған нанобөлшектерде ковалентті байланыс түзу арқылы сәтті 

иммобилизденді. Құрылымы, мөлшері және элементтік құрамы ИҚ-Фурье трансформациялық 

инфрақызыл спектроскопиясы (ИҚ), сканерлейтін электронды микроскопия (СЭМ) және 

энергодисперсиялық рентген спектроскопиясы (ЭДC) көмегімен зерттелді. Алынған нанобөлшектерде 

(ЭДС деректері бойынша) 16,6 % бор бар екендігі анықталды, ал олардың орташа мөлшері (СЭМ 

деректері бойынша) 34±9 нм. In vitro тест HeLa (жатыр мойны обыры жасушалары) және PC-3 (қуық 

асты безінің қатерлі ісігі жасушалары) үшін 1–200 мкг/мл концентрация ауқымында төмен 

цитотоксикалықты көрсетеді. 

Кілт сөздер: Fe3O4 нанобөлшектері, силан, беттік модификациялау, пайдалы жүктемені мақсатты 

жеткізу, БНҰТ, карборан, биологиялық сынақ, цитотоксикалық. 
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Модификация магнитных наночастиц Fe3O4  

для адресной доставки полезного груза 

Разработка методов адресной доставки полезного груза — быстро развивающееся направление иссле-

дований. В связи с этим наночастицы оксида железа потенциально могут быть использованы для дос-

тавки веществ с помощью внешнего магнитного поля. Однако необходимо разработать методы их мо-

дификации, которые приведут к возможности иммобилизации лекарственных веществ необходимой 

концентрации для терапевтического использования. В статье супермагнитные наночастицы оксида 

железа (Fe3O4) были модифицированы силанами, такими как (3-хлорпропил)триметоксисилан, 

(3-меркаптопропил)триметоксисилан, (3-аминопропил)триметоксисилан и (3-глицидилпропил)три-

метоксисилан. Затем карборановое соединение было успешно иммобилизовано на модифицированные 

наночастицы посредством образования ковалентной связи. Структура, размер и элементный состав 

изучены с помощью инфракрасной спектроскопии с преобразованием Фурье (ИК), сканирующей 

электронной микроскопии (СЭМ) и энергодисперсионной рентгеновской спектроскопии (ЭДА). Было 

обнаружено, что полученные наночастицы содержат 16,6 % бора (по данным ЭДА), а их средний раз-

мер составляет 34±9 нм (по данным СЭМ). Тест in vitro показывает низкую цитотоксичность в диапа-

зоне концентраций 1–200 мкг/мл для HeLa (клетки рака шейки матки) и PC-3 (клетки рака простаты). 

Ключевые слова: наночастицы Fe3O4, силан, модификация поверхности, адресная доставка полезного 

груза, БНЗТ, карборан, биологический тест, цитотоксичность. 
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